11x-23=x^2+1

Simple and best practice solution for 11x-23=x^2+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 11x-23=x^2+1 equation:



11x-23=x^2+1
We move all terms to the left:
11x-23-(x^2+1)=0
We get rid of parentheses
-x^2+11x-1-23=0
We add all the numbers together, and all the variables
-1x^2+11x-24=0
a = -1; b = 11; c = -24;
Δ = b2-4ac
Δ = 112-4·(-1)·(-24)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-5}{2*-1}=\frac{-16}{-2} =+8 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+5}{2*-1}=\frac{-6}{-2} =+3 $

See similar equations:

| -7d-19=-68 | | 4x+11/6=-25 | | 34-5r=-3+7(1-5r) | | 8x-2+9x-14=180 | | 3x+4=7-(x+17) | | 45^2=36^2+b^2 | | 1/64=2^-x-10 | | 8^3x=(1/4)^x+1 | | 8^3x=(1/4)^x | | (8+x)(x+5)=0 | | 5/12*b=25 | | 32x+9x+4=168 | | 25-7x=165 | | 2.24=x10^-23 | | 5a^2-37a=24 | | 8e+2=9e-8 | | 3w+33=7(w-1) | | 52+(14x-4)=90 | | 0.21x-0.7(0.13x-0.5)=0.42 | | 90+6s-8+8s=180 | | (6x-6)+132=180 | | 90+2k-2+k+2=180 | | 8*x+11=5*x-7 | | 1/2(8x+2)=13 | | -9=x/2-7 | | u/5-8=-13 | | 41=u/3+12 | | 5x-13=2x-22 | | 193=-v+46 | | 93=174-v | | -u+269=30 | | 7/3x-5/4=-x+4/3 |

Equations solver categories